Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrödinger Equationwith TrappedTerm
نویسندگان
چکیده
The multi-symplectic Runge-Kutta (MSRK) methods and multi-symplectic Fourier spectral (MSFS) methods will be employed to solve the fourth-order Schrödinger equations with trapped term. Using the idea of split-step numerical method and the MSRK methods, we devise a new kind of multi-symplectic integrators, which is called split-stepmulti-symplectic (SSMS)methods. The numerical experiments show that the proposed SSMSmethods aremore efficient than the conventional multi-symplectic integrators with respect to the the numerical accuracy and conservation perserving properties. AMS subject classifications: 65P10, 65M06, 65M70
منابع مشابه
Complete characterization of fourth-order symplectic integrators with extended-linear coefficients.
The structure of symplectic integrators up to fourth order can be completely and analytically understood when the factorization (split) coefficients are related linearly but with a uniform nonlinear proportional factor. The analytic form of these extended-linear symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and nonforw...
متن کاملThe Complete Characterization of Fourth-Order Symplectic Integrators with Extended-Linear Coefficients
The structure of symplectic integrators up to fourth-order can be completely and analytical understood when the factorization (split) coefficents are related linearly but with a uniform nonlinear proportional factor. The analytic form of these extended-linear symplectic integrators greatly simplified proofs of their general properties and allowed easy construction of both forward and non-forwar...
متن کاملSplit-Step Multi-Symplectic Method for Nonlinear Schrödinger Equation
Multi-symplectic methods have recently been considered as a generalization of symplectic ODE methods to the case of Hamiltonian PDEs. The symplectic of Hamiltonian systems is well known, but for Partial Differential Equation (PDEs) this is a global property. In addition, many PDEs can be written as Multisymplectic systems, in which each independent variable has a distinct symplectic structure. ...
متن کاملHigh-Order Symplectic FDTD Scheme for Solving Time-Dependent Schrödinger Equation
Using the three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for discretizing Schrödinger equation is described. Then the numerical stability and dispersion analyses are provided for the FDT...
متن کاملFinite Element Methods for Variational Integrators with Applications to Nonlinear Schrödinger Equation
In this paper we introduce a new method of spatio-temporal discretization for partial differential equations in variational form. This method generalizes the method of Marsden et al in that it uses a systematic approach to discrete jet spaces based on the finite element method. The resulting method is used to derive integrators for the Nonlinear Schrödinger (NLS) equation which exhibit superior...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009